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Abstract. We study the Onsager algebra from the ideal theoretic point of view. A complete
classification of closed ideals and the structure of quotient algebras are obtained. We also discuss
the solvable algebra aspect of the Onsager algebra through the use of formal Lie algebras.

1. Introduction

By the Onsager algebra we mean an infinite-dimensional Lie algebra with a basis Am,
Gm (m ∈ Z) and the commutation relations:

[Am,Al] = 4Gm−l (1a)

[Am,Gl, ] = 2Am−l − 2Am+l (1b)

[Gm,Gl] = 0. (1c)

This Lie algebra appeared in the seminal paper of Onsager [19], in which the free energy of the
two-dimensional Ising model was computed exactly. We shall call this algebra the Onsager
algebra following the convention in [9]. In his paper Onsager exploited the (row-to-row)
transfer matrix method, by which the calculation amounts to the calculation of the largest
eigenvalue of the transfer matrix. The transfer matrix has the form

constant × eAeB

where A and B are matrices of degree 2n (n being the number of sites on a row), which
are the linear sums of tensor products of Pauli matrices. By analysing the structure of the
algebra (representation) generated by A and B in detail, Onsager derives the algebra (1) or
its representations. The number of sites n is used in the representation or in the structure of
quotient algebra as follows:

Am+2n = Am Gm+2n = Gm.

Although the structure changes slightly depending on the parity of n, the resulting
representation is a direct sum of quaternions and scalars. Utilizing this analysis Onsager
computed the largest, the second largest eigenvalues and corresponding eigenvectors of the
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transfer matrix. Later, Onsager re-solved the two-dimensional Ising model by using the now
famous free fermions (Clifford algebras) with Kaufman [14, 15]. The method of the free
fermion is a much more powerful one than that based on the algebra (1). This might be
the reason why the Onsager algebra was forgotten for a while. In the 1980s, this algebra
reappeared with the renewed interest in two-dimensional integrable field theories. Dolan and
Grady [11] rediscovered this algebra while studying the condition for a two-dimensional field
theory to possess an infinite number of conservation laws. Subsequently this algebra again
appeared in the study of integrable spin chains [12], and then in the superintegrable chiral Potts
model [4]. The spectrum of the superintegrable chiral Potts model is shown to obey certain
quadratic equations by a numerical study in [3]. Davies [9] studied representations of the
quotient of the Onsager algebra by an ideal generated by a linear relation among Aj s and gave
an answer to this observation. Except for these, not so much attention was paid on the Onsager
algebra. One of the present authors [23] found that the Onsager algebra can be presentated as
an invariant subalgebra of the loop algebra C[t, t−1] ⊗ sl2 by an involution while examining
the papers [9, 10]. A generalization of the Onsager algebra to the case sln was studied in [25],
which enhances the work [1]. Although the paper [9] is full of inspiring content, it contains
somewhat ambiguous settings and claims from a mathematical viewpoint. This was one of the
motivations for the paper [23] and also the present one.

The present study aims to pursue the direction in [9, 10], but with more stress on the
quotient algebras by ideals rather than the representations as in [9, 23]. In the course of our
study we focus our attention on the case when the quotient algebras do not have the centre.
Such an ideal whose quotient algebra does not contain central elements will be called a closed
ideal in this paper. We classify all the closed ideals of the Onsager algebra by exploiting the
presentation of this algebra as a subalgebra of the loop algebra mentioned above. To each
closed ideal there corresponds a ‘reciprocal’ polynomial in one variable. The structure of the
quotient algebra differs according to whether the corresponding polynomial has ±1 as its zeros
or not. If ±1 are not among zeros of the polynomial, the quotient is a direct sum of the algebras(
C[u]/uLj C[u]

)⊗sl2 for positive integers Lj . In the case when the polynomial is (t ±1)L, we
found by computer experiments that the derived algebras of the quotient algebras thus arising
are identical to a series of nilpotent Lie algebra studied by Santharoubane [24]. Santharoubane
obtained such a series in a project of reducing the classification of nilpotent Lie algebras to
that of certain ideals in the nilpotent part of Kac–Moody–Lie algebras. The notion of roots
in nilpotent Lie algebras are used there to establish the connection with Kac–Moody–Lie
algebras.

Now we outline the contents of this paper. We start by recalling in section 2 some known
facts about the Onsager algebra needed for our later discussion. In section 3, we establish a
basic ideal-structure theorem of the Onsager algebra (see theorem 2), which associates each
closed ideal with a reciprocal polynomial (in one variable t). Using this result, the structure
of quotients of the Onsager algebra by closed ideals is reduced to those by ideals which are
generated by powers of elementary reciprocal polynomials, (t − a)(t − a−1) for non-zero
complex numbers a. In sections 4 and 5, we derive the structure of those quotient algebras
for a �= ±1 and a = ±1, respectively. Furthermore, we study the completion of the Onsager
algebra through these quotient algebras, which provides a different realization of the Onsager
algebra in a completion of the nilpotent part of A(1)

1 in the principal realization. The relation
with solvable, nilpotent algebras is also discussed in section 5 for the case a = 1. In section 6,
we derive the classification of finite-dimensional irreducible representations of the Onsager
algebra, a result known in [9, 23], from our ideal theoretical point of view, and discuss its
physical application to the spectra of the superintegrable chiral Potts Hamiltonian. Finally, we
conclude in section 7 with some remarks.
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Notation

To present our work, we introduce some notation. In this paper, we shall use the following
conventions:

• sl2 is the Lie algebra sl2(C) with the standard generators e, f, h,

[e, f ] = h [h, e] = 2e [e, f ] = −2f.

• θ : sl2 −→ sl2, the (Lie) involution defined by θ(e) = f, θ(f ) = e, θ(h) = −h.
• L(sl2) = C[t, t−1] ⊗ sl2, the loop algebra of sl2 with the Lie-bracket

[p(t)x, q(t)y] = p(t)q(t)[x, y] for p(t), q(t) ∈ C[t, t−1] x, y ∈ sl2.

• θ̂ : L(sl2) −→ L(sl2), the involution defined by θ̂ (p(t) ⊗ x) = p(t−1) ⊗ θ(x).
• sl2[[u]] = C[[u]] ⊗ sl2, the Lie algebra of formal series in u with coefficients in sl2.
• For an (Lie) ideal I of a (non-trivial) Lie algebra L (over C), we shall denote

Z(I) := {x ∈ L | [x,L] ⊂ I}
which is an ideal of L such that Z(I)/I is the centre of the quotient algebra L/I. A
(non-trivial) ideal I is called a closed ideal if Z(I) = I, equivalently, L/I is a Lie algebra
with trivial centre.

2. The Onsager algebra

Let A0 and A1 be elements of a Lie algebra and denote

G1 = 1
4 [A1, A0].

An infinite sequence of elements Am,Gm (m ∈ Z) is defined by the relations

Am−1 − Am+1 = 1
2 [Am,G1] Gm = 1

4 [Am,A0].

Theorem 1. The following conditions are equivalent.

(I) The elements A0 and A1 satisfy the Dolan–Grady (DG) condition [11]:

[A1, [A1, [A1, A0]]] = 16[A1, A0] [A0, [A0, [A0, A1]]] = 16[A0, A1].

(II) The infinite sequence of elements Am,Gm (m ∈ Z) satisfy the relation (1).

Proof. The proof of (I) �⇒ (II) can be found in [10, 23], which will be omitted here. For
(II) �⇒ (I), it follows from the relations in (1a) for (m, l) = (0,±1), (1, 0) and (1b) for
(m, l) = (0, 1), (1, 1). �

By the above theorem, we introduce the following definition of the Onsager algebra [23].

Definition. The Onsager algebra, denoted by OA, is the universal Lie algebra generated by
two elements A0 and A1 with the DG condition. Equivalently, OA is identified with the fixed
Lie-subalgebra of L(sl2) by the involution θ̂ . The elements Am,Gm of OA have the following
expressions in L(sl2):

Am = 2tme + 2t−mf Gm = (tm − t−m)h for m ∈ Z.

We shall always make the above identification of Am and Gm as elements in L(sl2) in what
follows. For an element X of L(sl2), the criterion of X in OA is given by

X ∈ OA ⇐⇒ X = p(t)e + p(t−1)f + q(t)h with q(t) = −q(t−1)
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where p(t), q(t) ∈ C[t, t−1]. Note that a polynomial q(t) with the above property can be
written in the form

q(t) = q+(t) − q+(t
−1) with q+(t) ∈ C[t].

Then the following equalities hold:

[p(t)e + p(t−1)f + q(t)h, e + f ] = 2q(t)e + 2q(t−1)f + (p(t) − p(t−1))h

[p(t)e + p(t−1)f + q(t)h, te + t−1f ] = 2tq(t)e − 2t−1q(t)f + (t−1p(t) − tp(t−1))h.
(2)

It is easy to see that the universal enveloping algebra of OA is the fixed subalgebra of
the universal enveloping algebra of L(sl2) by θ̂ , hence with the inherited co-multiplication
structure:

Am �→ Am ⊗ 1 + 1 ⊗ Am Gm �→ Gm ⊗ 1 + 1 ⊗ Gm.

In OA, there are two involutions ι, σ defined by

ι : p(t)x �→ p(t−1)x i.e. ι(Am) = A−m ι(Gm) = G−m

σ : p(t)x �→ p(−t)x i.e. σ (Am) = (−1)mAm σ(Gm) = (−1)mGm

which we will use later in the paper.

3. Ideal structure of the Onsager algebra

In this section, we are going to determine the structure of closed ideals ofOA. LetP(t)be a non-
trivial monic polynomial in C[t]. We call P(t) a reciprocal polynomial if P(t) = ±tdP (t−1),
where d is the degree of P(t). Then one has, P(t)C[t, t−1] = P(t−1)C[t, t−1]. It is easy to
see that the zeros of P(t) not equal to ±1 occur in reciprocal pairs. In fact, P(t) is a product
of the following elementary reciprocal polynomials Ua(t) for a ∈ C

∗, where Ua(t) is defined
by

Ua(t) :=
{
t2 − (a + a−1)t + 1 if a2 �= 1

t − a if a = ±1.
(3)

Note that Ua(t) = Ua−1(t). Let P(t) be a reciprocal polynomial. We call an element
X of OA divisible by P(t), denoted by P(t)|X, if X = p(t)e + p(t−1)f + q(t)h with
p(t), q(t) ∈ P(t)C[t, t−1]. Denote

IP(t) := {X ∈ OA | P(t)|X}.
Then IP(t) is an ideal in OA invariant under the involution ι. For two reciprocal polynomials
P(t) and Q(t), one has the relation

IP(t)

⋂
IQ(t) = Ilcm(P (t),Q(t)).

In particular, IP(t) ⊆ IQ(t) if Q(t)|P(t), hence there is the canonical projection

OA/IP(t) −→ OA/IQ(t).

The following lemma will be useful for later purposes.

Lemma 1. Let Pj (t)1 � j � J be pairwise relatively prime reciprocal polynomials and
P(t) := ∏J

j=1 Pj (t). Then the canonical projections give rise to a Lie-isomorphism:

OA/IP(t)
∼−→

J∏
j=1

OA/IPj (t).
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Proof. The injective part is obvious, so we only need to show the surjectivity of the above
map. For Xj = pj (t)e + pj (t

−1)f + qj (t)h ∈ OA, 1 � j � J , let N be a positive integer
such that tNpj (t), t

Nqj (t) are all polynomials in t . By the Chinese remainder theorem, there
exist polynomials p̃(t), q̃(t) ∈ C[t] such that the following relations hold in C[t]:

p̃(t) ≡ tNpj (t) q̃(t) ≡ tNqj (t) (mod Pj (t)) for all j.

Define the element X of OA by

X := p(t)e + p(t−1)f + q(t)h

where

p(t) = p̃(t)

tN
q(t) = 1

2

(
q̃(t)

tN
− tN q̃(t−1)

)
∈ C[t, t−1].

By qj (t) + qj (t
−1) = 0, one can easily see that both q(t) − qj (t), p(t) − pj (t) are divisible

by Pj (t) for all j . Hence X ≡ Xj (mod IPj (t)) for all j . �

Lemma 2. Let P(t) be a reciprocal polynomial and write

P(t) = (t − 1)L(t + 1)KP ∗(t) L,K � 0 P ∗(±1) �= 0.

Denote P̃ (t) := (t − 1)2[L/2](t + 1)2[K/2]P ∗(t), here [r] stands for the integral part of a
rational number r . Then

Z(IP(t)) = {p(t)e + p(t−1)f + q(t)h ∈ OA | P̃ (t)|p(t), P (t)|q(t)}.
As a consequence, IP(t) is closed if and only if the zero-multiplicities of P(t) at t = ±1 are
even.

Proof. For X = p(t)e +p(t−1)f + q(t)h ∈ OA, the criterion of X in Z(IP(t)) is given by the
relations

P(t)|[X, e + f ], [X, te + t−1f ]

which by (2) is the same as

P(t)|q(t), (t − t−1)p(t), p(t) − p(t−1).

Let p(t) be an element of C[t, t−1] which satisfies the above conditions. Then P ∗(t)|p(t). In
order to have the conclusion of the lemma, we may assume either L or K to be greater than 0,
say L > 0. One has

(t − 1)L−1|p(t), (t − 1)L|(p(t) − p(t−1)). (4)

Write p(t) = (t − 1)L−1h(t). We have

p(t) − p(t−1) = (t − 1)L−1
(
h(t) − (−t)−L+1h(t−1)

)
.

Then (t − 1)|(h(t) − (−t)−L+1h(t−1)), i.e. h(1)(1 − (−1)−L+1) = 0, which is equivalent to
the following relation:

(t − 1)L|p(t) for even L

(t − 1)L−1|p(t) for odd L.

Therefore, the relation (4) is the same as (t − 1)2[L/2]|p(t). The same argument also applies
to the case (t + 1)K for K > 0. Hence we obtain the following result. �
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Lemma 3. Let I be an ideal in OA and r(t) be an element of C[t, t−1].

(i) If r(t)e + r(t−1)f is an element in I , then (p(t)− p(t−1))h ∈ I for p(t) ∈ r(t)C[t, t−1].
(ii) For a closed ideal I and an integer l, one has

(tj r(t) − t−j r(t−1))h ∈ I (j = 0,−1) �⇒ p(t±1)e + p(t∓1)f ∈ I

for p(t) ∈ r(t)C[t, t−1]

r(t)e + r(t−1)f ∈ I ⇐⇒ r(t−1)e + r(t)f ∈ I

⇐⇒ t lr(t)e + t−lr(t−1)f ∈ I

⇐⇒ (tj r(t) − t−j r(t−1))h ∈ I (j = 0,−1).

Proof. It is easy to see that the equivalent relations in the second part of (ii) follows from
the other ones of the lemma. We may also assume the p(t) in the statement with the form
p(t) = tmr(t) for m ∈ Z. Write r(t) = ∑

k akt
k , where ak ∈ C, ak = 0 for |k| � 0. One has

2r(t)e + 2r(t−1)f =
∑
k

akAk

(r(t) − r(t−1))h =
∑
k

akGk

(t−1r(t) − tr(t−1))h =
∑
k

akGk−1.

By the relation (1a) one obtains (i). If I is a closed ideal and
∑

m akGk+j ∈ I for j = 0,−1
by (1a) we have

4
∑
m

akGk =
[∑

m

akAk,A0

]
4
∑
m

akGk−1 =
[∑

m

akAk,A1

]

which implies r(t)e + r(t−1)f ∈ I . Using (i), one has (tm+j r(t) − t−m−j r(t−1))h ∈ I for
j = 0,±1. With the same argument, we can also show p(t±1)e + p(t∓1)f ∈ I . �

Theorem 2. Let I be an ideal in OA. Then I is closed if and only if I = IP(t) for a reciprocal
polynomial P(t) whose zeros at t = ±1 are of even multiplicity.

Proof. The ‘if’ part follows from lemma 2. Let I be a closed ideal. Denote

Ī := {r(t) ∈ C[t, t−1] | r(t)e + r(t−1)f ∈ I }.
By lemma 3 (ii), Ī is an ideal in C[t, t−1] invariant under the involution r(t) �→ r(t−1). Let
P(t) be the monic polynomial which generates the ideal Ī ∩ C[t] of the polynomial ring C[t].
Then P(t) is a reciprocal polynomial and Ī = P(t)C[t, t−1]. By (2), an element q(t)h of
OA is divisible by P(t) if and only if it belongs to I . Hence I contains the ideal IP(t). We
are going to show I = IP(t), by which and using lemma 2, the result follows immediately.
Otherwise, there exists an element X of I \ IP(t) and write

X = p(t)e + p(t−1)e + q(t)h q(t) = q+(t) − q+(t
−1)

where p(t) ∈ C[t, t−1], q+(t) ∈ C[t]. Note that q(t) is not divisible by P(t), neither for p(t)
by the first equality in (2). We may assume the polynomial q+(t) with the degree being less
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than that of P(t) and q+(0) = 0. Let X̃ be such an element X with the degree of q+(t) being
the maximal one. By (2), we have the following expressions of elements in I :

[X̃, e + f ] = 2q(t)e + 2q(t−1)f + k(t)h

[[X̃, e + f ], te + t−1f ] = 2tk(t)e − 2t−1k(t)f + 2(t−1q(t) − tq(t−1)h.

Note that both q(t) and k(t) are not divisible by P(t). One can write t−1q(t) − tq(t−1) =
q̃(t) − q̃(t−1), where q̃(t) := tq+(t) + t−1q+(t) ∈ C[t]. The degree of the polynomial q̃(t)
is greater than that of q+(t), so is q̃(t) − q̃(0). By the definition of X̃, t−1q(t) − tq(t−1) is
divisible by P(t), which implies P(t)|tk(t). By P(0) �= 0, k(t) is divisible by P(t), which
contradicts our previous statement for k(t). �

Remark. The ideal IP(t) in the above theorem is characterized as the minimal closed ideal of
OA containing P(t)e + P(t−1)f . We shall call P(t) the generating polynomial of the closed
ideal IP(t).

Remark. For affine Lie algebras classification of ideals is known (cf theorem 4 of [18] and
lemma 8.6 of [13]).

An important class of closed ideals arises from representations of OA, by which we shall
always mean finite-dimensional Lie-algebra representations in this paper. The kernel of a
representation ρ : OA −→ gl(V ) is always an ideal of OA, which will be denoted by Ker(ρ).
As the DG condition is unchanged by adding constants on ρ(A0) and ρ(A1), one may assume
that the representation takes values in sl(V ). For an irreducible representation ρ of OA in
sl(V ), by Schur’s lemma Ker(ρ) is a closed ideal, and hence invariant under the involution
ι by theorem 2. A representation ρ of OA on a vector space V is called Hermitian if both
ρ(A0) and ρ(A1) are Hermitian operators on V , which is equivalent to the Hermitian property
of ρ(Aj ) for all j . Note that in this situation, the operators

√−1ρ(A0) and
√−1ρ(A0) give

rise to a representation of OA into su(V ). Hence every Hermitian representation of OA is
completely reducible. For an irreducible Hermitian representation ρ of OA in sl(V ), Ker(ρ) is
invariant under complex conjugation, equivalently the generating polynomial P(t) of Ker(ρ)
has real coefficients.

By theorem 2 and lemma 1, the understanding of the complete structure of quotient
algebras of OA by closed ideals I is reduced to the case I = IUL

a (t)
for a ∈ C

∗, L ∈ Z�0,
where Ua(t) is the elementary reciprocal polynomial (3). For a ∈ C

∗, we are going to define
a completion ÔAa of OA as follows. Set OAa,L := OA/IUL

a (t)
and we have the canonical

projections

πa,L: OA −→ OAa,L

πa,KL: OAa,L −→ OAa,K L � K � 0.

The projective system of Lie algebras (OAa,L, πa,KL)L,K∈Z�0 gives rise to a limit, which is a
Lie algebra denoted by

ÔAa := lim← OAa,L.

For L � 0, there is a canonical morphism ψa,L : ÔAa −→ OAa,L. We denote its kernel by

ÔA
L

a := Ker(ψa,L). The ideals ÔA
L

a form a filtration of ÔAa ,

ÔAa = ÔA
0
a ⊃ ÔA

1
a ⊃ · · · ⊃ ÔA

L

a ⊃ · · · ÔAa/ÔA
L

a ! OAa,L.
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The family of morphisms {ψa,L} gives rise to a morphism from OA into ÔAa

πa : OA −→ ÔAa

with ψa,Lπa = πa,L. In the next two sections, we are going to determine the structure of
OAa,L and ÔAa . For L = 1, OAa,1 can be realized in sl2 through the evaluation morphism
of OA

eva : OA −→ sl2 p(t)x �→ p(a)x.

In fact, we have the following result.

Lemma 4. Ker(eva) = IUa(t) and the map eva induces the isomorphism:

OAa,1 !
{

C(e + f ) if a = ±1

sl2 otherwise.

Proof. By Ua(a
±1) = 0, Ker(eva) ⊇ IUa(t). Let X be an element of Ker(eva) with the

expression X = p(t)e + p(t−1)f + q(t)h. Then p(a±1) = q(a) = 0. By q(t−1) = −q(t),
p(t) and q(t) are divisible by Ua(t), therefore X ∈ IUa(t). When a = ±1, it is easy to
see that Im(eva) is the one-dimensional space generated by e + f . For a �= ±1, Im(eva)

is a Lie subalgebra of sl2 containing e + f, ae + a−1f . This implies e, f ∈ Im(eva), hence
Im(eva) = sl2. In fact, the basis of sl2 has the following expression in terms of elements of
Im(eva), Am := eva(Am):

e = A1 − a−1A0

2(a − a−1)
f = A1 − aA0

−2(a − a−1)
h = G1

a − a−1

or

e = aAm − Am−1

2am(a − a−1)
f = a−1Am − Am−1

−2a−m(a − a−1)
h = Gm

am − a−m
. �

4. Structure of the quotient by ideal generated by Ua(t)L, a � = ±1

In the following discussion, we use the following notation for the shifted factorial:

x(0) = 1 x(n) = x(x − 1) · · · (x − n + 1) n ∈ Z>0.

Then (
x

n

)
= x(n)

k!
.

For a ∈ C
∗, we define an injective (Lie) morphism from OA into sl2[[u]] by the Taylor series

expansion of a function around t = a with the variable u = t − a,

sa : OA −→ sl2[[u]] p(t)x �→
∑
j�0

djp

dt j
(a)

uj

j !
x (5)

where p(x) ∈ C[t, t−1], x ∈ sl2. For a positive integer L, sl2[[u]]/uLsl2[[u]] is isomorphic
to the Lie algebra (C[u]/uLC[u])⊗ sl2. By composing with the natural projection of sl2[[u]]
to sl2[[u]]/uLsl2[[u]], sa gives rise to the morphism

sa,L : OA −→ sl2[[u]]/uLsl2[[u]].

Note that sa,1 is equivalent to the evaluation morphism eva . We are going to extend the result
of lemma 4 to an arbitrary positive integer L. First we need the following lemma.
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Lemma 5. Let f (t) be an analytic function on C
∗. Denote f̆ (t) = f (t−1). For a ∈ C

∗, the
zero multiplicities of f (t) at a−1 and f̆ (t) at a are the same.

Proposition 1. For L ∈ Z>0, Ker(sa,L) = IUL
a

. The morphism sa,L is surjective if and only if
a �= ±1.

Proof. As before we denote f̆ (t) = f (t−1) for f (t) ∈ C[t, t−1]. An element of OA is
expressed by p(t)e + p̆(t)f + q(t)h with p(t), q(t) ∈ C[t, t−1] and q(t) = −q̆(t). By
lemma 5, we have

p(t)e + p̆(t)f + q(t)h ∈ IUL
a (t)

⇐⇒ p(t), q(t) ∈ (t − a±1)LC[[t − a±1]]

⇐⇒ p(t), p̆(t), q(t) ∈ (t − a)LC[[t − a]]

⇐⇒ p(t)e + p̆(t)f + q(t)h ∈ Ker(sa,L).

Therefore, IUL
a

= Ker(sa,L). For a �= ±1, UL
a (t) is a polynomial of degree 2L. One has the

relation



sa,L(A0)

sa,L(A1)
...
...

sa,L(A2L−2)

sa,L(A2L−1)


= 2(C+, C−)



e
...

uL−1

(L − 1)!
e

f
...

uL−1

(L − 1)!
f


.

where C± are the 2L × L-matrices defined by

C± =



a0,0 · · · a0,L−1

a±1,0 · · · a±1,L−1

... · · · ...

... · · · ...

a±(2L−2),0 · · · a±(2L−2),L−1

a±(2L−1),0 · · · a±(2L−1),L−1


am,j := m(j)am−j .

Claim. The square matrix (C+, C−) is invertible.

Otherwise there exists a non-trivial linear relation
∑2L−1

m=0 αma±m,j = 0 (j = 0, . . . , L − 1)
for αm ∈ C not all zeros. Then

∑2L−1
m=0 αmt

m is a non-trivial polynomial, denoted by Q(t). By
lemma 5, the zero-multiplicities of the polynomial Q(t) at t = a±1 are both at least L, which
contradicts the fact that the degree of Q(t) < 2L. By inverting the square matrix (C+, C−),
the elements (uj/j !)e and (uj/j !)f for j = 0, . . . , L − 1, are in the Lie subalgebra Im(sa,L)

of sl2[[u]]/uLsl2[[u]]. Hence it follows immediately that the surjectivity of sa,L for a �= ±1.
For a = ±1, we consider the commutative diagram

OA
sa,L−→ sl2[[u]]/uLsl2[[u]]

‖ ↓
OA

sa,1−→ sl2

where the right vertical morphism is the canonical projection. By lemma 4, the image of s±1,1

is an one-dimensional subspace of sl2 and it implies the non-surjectivity of s±1,L. �
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As a corollary of proposition 1, for a �= ±1 the morphism sa,L induces an isomorphism,

OAa,L ! sl2[[u]]/uLsl2[[u]] L ∈ Z>0.

By the definition of the formal algebra ÔAa , one obtains the following result.

Theorem 3. For a ∈ C
∗ and a �= ±1, the morphism sa of (5) gives rise to the following

isomorphisms:

ÔAa ! sl2[[u]] ÔA
L

a ! uLsl2[[u]]

and

OAa,L ! (C[u]/uLC[u]) ⊗ sl2.

Remark. For a = √−1, one has Ua(t) = t2 + 1. The above structure of OA√−1,L for L = 2
appeared in [23].

Through the morphism πa , one can regard OA as a subalgebra of sl2[[u]], which is
identified with ÔAa by theorem 3. Then the expressions of Am and Gm in sl2[[u]] are given
by

Am = 2
∑
j�0

(
m(j)am−j u

j e

j !
+ (−m)(j)a−m−j u

jf

j !

)

Gm =
∑
j�0

(
m(j)am−j − (−m)(j)a−m−j

) ujh
j !

.

With the identification OAa,L with sl2[[u]]/uLsl2[[u]], one has the expression of elements of
the Onsager algebra,

Am = 2
L−1∑
j=0

(m(j)am−j ej + (−m)(j)a−m−j fj )

Gm =
L−1∑
j=0

(m(j)am−j − (−m)(j)a−m−j )hj

where ej , fj and hj are the elements in sl2[[u]]/uLsl2[[u]] represented by (uj/j !)e, (uj/j !)f ,
(uj/j !)h, respectively. In fact, one can start with the above relations. Using Onsager’s relation
(1) of Am and Gm, one obtains the relations of ej , fj and hj by the following formula of shift
factorials:

(x + y)(m) =
m∑

k=0

(
m

k

)
x(k)y(m−k).

5. Structure of the quotient using an ideal generated by (t ± 1)L

In this section, we shall discuss the structure of OAa,L for a = ±1. As the involution σ of
OA, which sends t to −t , induces an isomorphism

OA1,L ! OA−1,L

we only need to consider the case a = 1. For the simplicity of notation, we shall omit the
index a = 1 in this section and denote the algebras as

OAL = OA1,L ÔA = ÔA1 ÔA
L = ÔA

L

1
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and the morphisms as

πL : OA −→ OAL π : OA −→ ÔA ψL : ÔA −→ OAL.

For X ∈ OA, the element π(X) in ÔA will be denoted by X again later in the discussion.

Lemma 6. There are unique elements Xk, Y k (0 � k < L) in OAL such that

πL(Am) =
L−1∑
k=0

(
m

k

)
Xk πL(Gm) =

L−1∑
k=0

(−1)k
(
m

k

)
Y k for m ∈ Z.

Furthermore, we have Y k := 1
4 (−1)k[Xk,X0].

Proof. The above relations for 0 � m < L imply the uniqueness of Xk, Y k . In fact, one can
define Xk in terms of πL(Am) (0 � m < L) through these relations and set Y k := 1

4 [Xk,X0].
By the definition of the ideal I(t−1)L , we have

L−1∑
k=0

(−1)k
(
L

k

)
πL(Ak+m) = 0 m ∈ Z.

By using (1a), the results follow. �
The above elementsXk, Y k of OAL forL > 0 give rise to an infinite sequence of elements

in ÔA, Xk, Yk (k ∈ Z�0) such that the following relations hold in ÔA:

Am(= π(Am)) =
∑
k�0

(
m

k

)
Xk Gm(= π(Gm)) =

∑
k�0

(−1)k
(
m

k

)
Yk. (6)

In OAL, we have

ψL(Xk) =
{
Xk for 0 � k < L

0 otherwise.

For simplicity of notation, the element ψL(X) of OAL for X ∈ ÔA will sometimes again be
denoted by X in the later discussions if no confusion could arise.

Recall that the Stirling numbers of the first kind

snk (n, k ∈ Z�0)

are integers such that the following relations hold for the shifted factorial x(n) and the kth
power xk:

x(n) =
∑
k�0

xksnk .

Then one has (
x

n

)
=
∑
k�0

1

k!
snk x

k.

Substituting the relations (6) into the defining relation of the Onsager algebra (1) and comparing
the coefficients of malb, we have∑

n,k�0

1

n!k!
sna s

k
b [Xn,Xk] = 4(−1)b

(
a + b

b

)∑
k�0

(−1)k

k!
ska+bYk

∑
n,k�0

(−1)n

n!k!
sna s

k
b [Yn,Xk] = 2(1 − (−1)a)

(
a + b

b

)∑
k�0

1

k!
ska+bXk

[Yn, Yk] = 0.
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The Stirling numbers of the second kind Sn
k (n, k ∈ Z�0) satisfy the relation

xn =
∑
k�0

x(k)Sn
k .

(For a general discussion of Stirling numbers, see, e.g., [8, 21].) Note that snn = Sn
n = 1 and

snk = Sn
k = 0 for k > n. As a direct consequence of the definition the matrices of infinite size(

snk
)
n,k�0 and

(
Sn
k

)
n,k�0 are inverse to each other∑

k

sak S
k
b = δab . (7)

For Stirling numbers we have the following identities:

Lemma 7. ∑
k

(−1)ksak S
k
b = (−1)a

a!

b!

(
a − 1

b − 1

)
[21] (p 44)

(
j + k

k

)
Sj
a =

∑
l

(
a + l

l

)
slkS

j+k
a+l [22] (p 204).

Note that the numbers defined by the first relation are known as the Lah numbers. Using (7)
and the identities in lemma 7, we obtain

Proposition 2.

[Xn,Xk] = 4(−1)n
∑
a�0

(
a + k − 1

a

)
Ya+n+k

= 4(−1)n
(
Yn+k +

∑
a>0

(
a + k − 1

a

)
Ya+n+k

)

[Yn,Xk] = 2

(
(−1)nXn+k −

∑
a�0

(−1)a
(
a + n − 1

a

)
Xa+n+k

)
(8)

= 2

((
(−1)n − 1

)
Xn+k −

∑
a>0

(−1)a
(
a + n − 1

a

)
Xa+n+k

)
[Yn, Yk] = 0.

With the infinite formal sum, ÔA is a formal Lie algebra with generators Xk, Yk; while ÔA
L

is the ideal generated by Xk, Yk with k � L. Hence for L � 0, ÔA
L
/ÔA

L+1
is Abelian and

ÔA/ÔA
L

is a finite-dimensional solvable Lie algebra. The elements Yk are not independent
in ÔA. We are now going to describe the relations among Yks. Since the commutator is skew
symmetric [Xn,Xk] = −[Xk,Xn], from the first relation of (8) we have∑

a�0

((
a + n − k − 1

a

)
+ (−1)n

(
a + k − 1

a

))
Ya+n = 0 0 � k � n. (9)

Since one easily sees that (9)n+1,k+1 = (9)n,k+1 − (9)n,k , and (9)n,n = (9)n,0, the relation (9) is
reduced to the following one:(

1 + (−1)n
)
Yn +

∑
a�1

(
a + n − 1

a

)
Ya+n = 0 for n � 0. (10)
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In particular, we have

Y0 = 0 2Y2n +
∑
a�1

(
a + 2n − 1

2n − 1

)
Ya+2n = 0 for n � 1. (11)

In order to solve this constraint, we first consider their relations in OAL. In this situation, we
easily see that YL = 0 if L is odd. For simplicity, we assume at this moment that L is even.
From (10), we see that Y2j is a linear combination of Y2k+1, j � k � [ 1

2 (L − 1)] and write

Y2j =
[ 1

2 (L−1)]∑
k=j

γjkY2k+1. (12)

After some calculation, we find that γjk has the following form:

γjk = (−1)k−j−1

2(k − j + 1)

(
2k

2j − 1

)
αk−j . (13)

Substituting (13) into (12), we have

k∑
j=0

(−1)j

2j + 2

(
2k + 2

2j + 1

)
αj = 1 0 � j �

[
1
2 (L − 1)

]
. (14)

Note that this relation does not contain L. In order to solve (14) we employ the techniques
from inversion relations (see [22], p 109).

Lemma 8. If a sequence {ak} is expressed in terms of another sequence {bk} as

a2n+1 =
n∑

k=0

(
2n + 2

2k + 1

)
b2n+1−2k

then we have the inversion formula

(2n + 2)b2n+1 =
n∑

k=0

(
2n + 2

2k

)
d2ka2n+1−2k

where dj are defined by the following expansion:

2x

ex − e−x
=

∞∑
j=0

d2j x
2j

(2n)!
.

The number d2j is related to the Bernoulli number Bj by the relation

d2j = (−1)j (22j − 2)B2j j � 1.

Recall that the Bernoulli numbers Bj are defined by the expansion

x

ex − 1
=

∞∑
j=0

bj

j !
xj with Bj = (−1)j−1b2j .

Applying the inversion relation of lemma 8 to (14), one obtains

αj = (−1)j
j∑

k=0

(−1)k
(

2j + 2

2k

)
(22k − 2)Bk. (15)

On the other hand, we have the following relation for the Bernoulli numbers:
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Lemma 9 (see [26]). Denote vj = 2(22j − 1)Bj . We have the following recurrence relation:

vk − 1
2

(
2k

2

)
vk−1 + 1

2

(
2k

4

)
vk−2 − · · · + (−1)k−1 1

2

(
2k

2k − 2

)
v1 + (−1)kk = 0.

Applying the above relation to the right-hand side of (15), we have

αj = 2(22j+2 − 1)Bj+1.

Therefore, the following result follows immediately:

Proposition 3. The following relations of Yks hold in OAL, hence in OA

Y2n =
∑
k�n

(−1)k−n+1 (4
k−n+1 − 1)Bk−n+1

k − n + 1

(
2k

2n − 1

)
Y2k+1. (16)

Through the morphism (5) for a = 1, ÔA is embedded in the formal algebra sl2[[u]], where
u is the local coordinate of the t-plane near t = 1

u = t − 1.

Another local coordinate near t = 1 is given by

v = t−1 − 1

with the relation u = −v/(1 + v), v = −u/(1 + u). We have sl2[[u]] = sl2[[v]]. In the
sl2-formal algebra, the elements Xk and Yk have the following symmetric expressions.

Lemma 10. The generators Xk, Yk (k � 0) of ÔA can be represented by

Xk = 2uke + 2vkf Yk = (−1)k
(
uk − vk

)
h.

Proof. The following relations hold in ÔA for n � 0:∑
k�0

(
n

k

)
Xk = An = 2tne + 2t−nf

∑
k�0

(
n

k

)
(−1)kYk = Gn = (tn − t−n)h.

By an induction procedure, our results follow from the identities

tn = (u + 1)n =
∑
k�0

(
n

k

)
uk

t−n = (v + 1)n =
∑
k�0

(
n

k

)
vk. �

Using lemma 10 and proposition 3, one obtains the following result.

Proposition 4. OAL is a solvable Lie algebra of dimension L + [L/2] with a basis consisting
of Xk and Yj with 0 � k, j < L and j odd.

Let us examine the structure of the quotient OA2l more closely. The quotient
OA2l/[OA2l ,OA2l] is one dimensional and is spanned by X0. Following the recipe of Malcev
[17] for studying the structure of solvable Lie algebras, we examine the spectrum of the operator
ad X0. The following result was found by looking in detail at the quotient algebras OA2l for
small l and then was proved by direct calculation.



The structure of quotients of the Onsager algebra by closed ideals 3289

Lemma 11. The operator ad X0 has the eigenvalues 0,±4 on the space OA2l . Each of the
eigenspace is l-dimensional. A basis of each eigenspace is given as follows:

0 : X0,

2l−1∑
k=2j−2

(−1)k
(
k − 1

2j − 4

)
Xk 2 � j � l

±4 : 2Y2j−1 ±
(
X2j−1 −

2l−1∑
k=2j−1

(−1)k
(
k − 1

2j − 2

)
Xk

)
1 � j � l.

Furthermore, the 0-eigenvectors commute with each other.

Unfortunately, the other commutation relations among the above eigenvectors are not so easy
to determine. Therefore, we proceed in the following manner. Set

H0 = 1
2X0

E0 = 1
4Y1 +

1

8

(
X1 −

2l−1∑
k=1

(−1)kXk

)
(17)

F0 = 1
4Y1 − 1

8

(
X1 −

2l−1∑
k=1

(−1)kXk

)
.

Then they satisfy the relations

[H0, E0] = 2E0 [H0, F0] = −2F0.

Set

H1 = [E0, F0]

and define inductively

Ej+1 = 1
2 [H1, Ej ] Fj+1 = − 1

2 [H1, Fj ] 0 � j � l − 2. (18)

Then we have

Lemma 12.
[
Ej+1, Fk−1

] = [
Ej , Fk

]
.

Proof. Using the definition of Ej+1, we have

[Ej+1, Fk−1] = [
1
2 [H1, Ej ], Fk−1

]
= − 1

2 [[Ej , Fk−1], H1] − 1
2 [[Fk−1, H1], Ej ].

Since [Ej , Fk−1] belongs to the 0-eigenspace of ad X0, the right-hand side in the above becomes

− 1
2 [Ej , [H1, Fk−1]] = [Ej , Fk]. �

By lemma 12, the commutator [Ej , Fk] depends only on j + k, which we denote by
Hj+k+1 := [Ej , Fk]. By proposition 4, a basis of OA2l is given byXj , 0 � j � 2l−1 andY2k+1,
0 � k < l. Through their relations with Xj, Yj , one can see that Hj,Ej , Fj , 0 � j � l − 1
also constitute a basis of OA2l . Furthermore, in view of the eigenvalue distribution of ad X0, it
is easy to see that Ej s and Fj s commute among themselves, respectively. Summarizing (17),
(18) and lemma 12, we have
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Theorem 4. The elements Ej , Fj , Hj , 0 � j � l − 1 form a basis of the quotient algebra
OA2l , in which the following commutation relations hold:

[Ej , Fk] = Hj+k+1 [Hj,Ek] = 2Ej+k [Hj, Fk] = −2Fj+k

[Ej ,Ek] = 0 [Fj , Fk] = 0

here if the indices exceed l − 1 then the corresponding elements are regarded to be 0.

The above commutation relations suggest that the structure of OA2l is very close to(
C[x]/xlC[x]

) ⊗ sl2. However, the actual structure differs slightly. To fix this we consider
the formal algebra ÔA and employ the loop representation of OA. Instead of the variables,
u = t − 1, v = t−1 − 1, which we used before, a convenient coordinate system near t = 1 for
our purpose now is the following one:

λ = 1
2 (t − t−1).

One has C[[u]] = C[[v]] = C[[λ]]. In fact, the relations of λ and u, v are given by

u = λ − 1 +
√

1 + λ2

v = −λ − 1 +
√

1 + λ2

λ = u(2 + u)

2(1 + u)
= −v(2 + v)

2(1 + v)
.

Using lemma 10 and substituting the above relations into (17), we have

H0 = e + f

E0 = 1
2λ(−h + (e − f ))

F0 = 1
2λ(−h − (e − f )).

We introduce the following elements in sl2 (which correspond to Pauli matrices in the canonical
representation of sl2):

σ 1 = e + f σ 2 = −√−1e +
√−1f σ 3 = h. (19)

By the definition of Ej , Fj and Hj , we find that

Hj = λ2j σ 1

Ej = 1
2λ

2j+1(
√−1σ 2 − σ 3)

Fj = 1
2λ

2j+1(−√−1σ 2 − σ 3).

Using the automorphism of sl2 by cyclic permuting σ j s, we obtain an isomorphism which
gives the structure of OA2l ,

OA2l !
l−1⊕
j=0

Cλ2jh +
l−1⊕
j=0

Cλ2j+1e +
l−1⊕
j=0

Cλ2j+1f. (20)

Note that the above OA2l is a solvable Lie algebra of dimension 3l. The derived ideal
[OA2l ,OA2l] is a nilpotent ideal of dimension 3l − 1. The classification of nilpotent Lie
algebras is, in general, known to be a wild problem. Santharoubane has proposed a programme
of classifying nilpotent Lie algebras in [24]. By analysing the commutation relations of root
vectors of nilpotent Lie algebras, Santharoubane associates a generalized Cartan matrix (GCM)
to each nilpotent Lie algebra and reduced the classification problem of nilpotent Lie algebras
to that of certain ideals in the nilpotent part of Kac–Moody algebras. However, this problem is
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not easy though. Santharoubane and others try to classify these ideals in classical Lie algebras.
For affine Lie algebras the work is done for A(1)

1 and A
(2)
2 . According to his classification there

are three series of nilpotent Lie algebras associated with A
(1)
1 . One of these series denoted by

A1,l−1,1 is isomorphic to

Ce +
l−1⊕
j=1

xjsl2 + Cxlf. (21)

We can give an explicit isomorphism between this Lie algebra and the derived ideal of OA2l .
However, since the formula is quite complicated, we will not give it here. Recall here that the
affine Lie algebra A(1)

1 has several realizations. The most well known one is the homogeneous
realization

A
(1)
1 ! (C[x] ⊗ sl2) ⊕ Cc.

There also exists the principal realization

A
(1)
1 ! (C[y2, y−2] ⊗ h) ⊕ (yC[y2, y−2] ⊗ e) ⊕ (yC[y2, y−2] ⊗ f ).

The presentation of the nilpotent Lie algebra (21) refers to the homogeneous realization, while
the nilpotent Lie algebra appearing as the derived ideal of (20) refers to the principal realization
of A(1)

1 . In conclusion, we found that the series of nilpotent Lie algebras A1,l,1 appears as the
derived ideal of the quotient of the Onsager algebra OA2l .

Now we go back to the structure problem of a general OAL and the formal algebra ÔA.
In the following, we present a slightly different approach from the previous one by considering
more on the loop structure of OA. First, we need the following relations of powers of the
coordinates, u, v, λ.

Lemma 13. In the Laurent series ring C((λ)), for n ∈ Z, we have

u2n + v2n, u2n−1 + v2n−1 ∈ λ2n
C[[λ2]]

u2n − v2n, u2n+1 − v2n+1 ∈ λ2n+1
C[[λ2]].

In fact, the following ratios tend to 1 as λ → 0

u2n + v2n

2λ2m

u2n−1 + v2n−1

(2n − 1)λ2n

u2n − v2n

2nλ2n+1

u2n+1 − v2n+1

2λ2n+1
.

Now we derive the structure of ÔA,OAL as follows:

Theorem 5. Denote the Lie subalgebras of sl2[[λ]] for L � 0

sl2〈〈λ〉〉 := C[[λ2]]h + λC[[λ2]]e + λC[[λ2]]f ⊂ sl2[[λ]]

sl2〈〈λ〉〉L := sl2〈〈λ〉〉
⋂

λLsl2[[λ]].

Then we have the isomorphism

ÔA ! sl2〈〈λ〉〉
which induces the isomorphisms

ÔA
L ! sl2〈〈λ〉〉L OAL ! sl2〈〈λ〉〉/sl2〈〈λ〉〉L.
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Proof. With the elements σ j s (19) of sl2 as before, there is a natural isomorphism

sl2〈〈λ〉〉 ! sl2〈〈λ〉〉′ := C[[λ2]]σ 1 + λC[[λ2]]σ 2 + λC[[λ2]]σ 3.

We need only show the results by replacing sl2〈〈λ〉〉 as sl2〈〈λ〉〉′. The expressions of Xk and
Yk in lemma 10 become

Xk = (uk + vk)σ 1 +
√−1(uk − vk)σ 2 Yk = (−1)k(uk − vk)σ 3

by which and relations in lemma 13, ÔA is a subalgebra of sl2〈〈λ〉〉′ and ÔA
L ⊆ sl2〈〈λ〉〉′L.

There is an induced canonical morphism

ρL : OAL = ÔA/ÔA
L −→ sl2〈〈λ〉〉′/sl2〈〈λ〉〉′L

for L � 0. It remains to show that ρL is an isomorphism. By proposition 4, Xk, Y2j+1 (0 �
k, 2j + 1 < L) form a basis of OAL. While in sl2〈〈λ〉〉′/sl2〈〈λ〉〉′L, λ2lσ 1, λ2j+1σ 2, λ2j+1σ 3,
0 � 2l, 2j + 1 < L form a basis. By using the behaviour of ratios in lemma 13 near λ = 1, the
matrix of ρL for these bases is an invertible lower triangular one. Hence ρL is an isomorphism.

�

Remark. The isomorphism in the above theorem for OAL for L = 2l is the one in (20). For
L = 2l + 1, it is given by

OA2l+1 !
l⊕

j=0

Cλ2jh +
l−1⊕
j=0

Cλ2j+1e +
l−1⊕
j=0

Cλ2j+1f

which can be derived by the same argument as before for (20) by examining the eigenvectors
of adX0.

6. Irreducible representations of the Onsager algebra and the superintegrable chiral
Potts model

In this section, we are going to derive the classification of irreducible representations of the
Onsager algebra. For a = (a1, . . . , an) ∈ C

∗n, one has the evaluation morphism of OA into
the sum of n copies of sl2 defined by

eva : OA −→
n⊕

sl2 X �→ (eva1(X), . . . , evan(X))

where evaj is the evaluation of OA at aj . Denote

Ua(t) :=
∏

a∈{a1,...,an}
Ua(t) ∈ C[t].

Lemma 14. We have Ker(eva) = IUa(t). The surjectivity of eva is equivalent toaj �= ±1, aj �=
a±1
k for j �= k.

Proof. For the determination of Ker(eva), through the diagonal map + : sl2 −→ sl2 ⊕sl2 and
the involution θ : sl2 −→ sl2, one may assume that a = (a1, . . . , an) satisfies the condition,
aj �= a±1

k for j �= k. In fact, for simplicity let us take n = 2 as an example; a similar argument
can apply to the case of a general n. When a1 = a2 = a, the evaluation map ev(a,a) of OA
can be reduced to eva by the relation ev(a,a) = +eva . When a1 = a−1

2 = a, one reduces the
map ev(a,a−1) to ev(a,a) by ev(a,a−1) = (id, θ)ev(a,a). Hence both situations are reduced to the
case n = 1. By lemma 4, the argument also shows the non-surjectivity of eva if a has two
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components with equal or reciprocal values; the same conclusion for a with one component
equal to ±1. Conversely, by lemma 4 eva is surjective for a with aj �= ±1 and aj �= a±1

k for
j �= k. Now we may assume a with aj �= a±1

k . Then

Ker(eva) =
n⋂

j=1

Ker(evaj ) =
n⋂

j=1

IUaj
(t) = IUa(t). �

The quotient space of C
∗ by identifying a with a−1 is again parametrized by C

∗ with the
variable denoted by â ∈ C

∗, which is related to a by the rational map

C
∗ −→ C

∗ a �→ â := 1
2 (a + a−1).

By composing with the involution ι of OA, the representations eva−1 and eva are equivalent
eva−1 = evaι. We shall use the following convention if no confusion could arise:

εâ := eva εâ := (εâ1 , . . . , εân ) for â = (â1, . . . , ân).

Denote S the collection of all the non-trivial integral representations of sl2. It is known that
elements in S are labelled by positive half-integers s, which corresponds to the irreducible
representation of sl2 on the (2s + 1)-dimensional vector space V (s). Therefore, the effective

irreducible integral representations of
n⊕

sl2 are indexed by s = (s1, . . . , sn) ∈ Sn, where
n⊕

sl2 acts on the vector space V (s)(:= ⊗V (sj )) by the relation,

(x1, . . . , xn)v =
∑
j

(1 ⊗ · · · ⊗ xj ⊗ · · · ⊗ 1)v xj ∈ sl2 v ∈ V (s).

Combining the above representation with εâ, one obtains a representation of OA on V (s)

ρ(â,s) : OA −→ gl(V (s)) (â, s) ∈ C
∗n × Sn.

The Hermitian condition of ρ(â,s) is given by |aj | = 1, equivalently, âj in the real interval
[−1, 1] for all j , i.e. a = (e

√−1θ1 , . . . , e
√−1θn), â = (cos(θ1), . . . , cos(θn)). Denote

Cn := {â = (â1, . . . , ân) ∈ (C∗ \ {±1})n | âj �= âk for j �= k}
Dn := Cn

⋂
(−1, 1)n.

By theorem 2 and the structure of Ker(eva) in lemma 14, one obtains the following results:

Proposition 5.

(I) Ker(ρ(â,s)) = IUa(t) for (â, s) ∈ C
∗n × Sn.

(II) ρ(â,s) is irreducible if and only if â ∈ Cn.
(III) ρ(â,s) is irreducible Hermitian if and only if â ∈ Dn.
(IV) For (â, s) ∈ Cn ×Sn, (â′, s′) ∈ Cn′ ×Sn′

, the representations ρ(â,s), ρ(â′,s′) are equivalent
if and only if n = n′ and â′

j = âσ (j), s
′
j = sσ(j) for some permutation σ of indices.

Now we are going to classify all the irreducible representations of OA.

Lemma 15. Let ρ be a non-trivial irreducible representation of OA in sl(V ). Then Ker(ρ) =
IUa(t) for some a = (a1, . . . , an) ∈ (C∗ \ {±1})n with aj �= a±1

k for j �= k.
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Proof. By Schur’s lemma, Ker(ρ) is a closed ideal. By theorem 2, Ker(ρ) = IP(t) for
some P(t) = ∏n

j=1 Uaj (t)
mj , where aj ∈ C

∗,mj ∈ Z>0 with aj �= a±1
k for j �= k,

and mj even whenever aj = ±1. It suffices to show mj = 1 for all j . Otherwise, we
may assume m1 � 2. Define the polynomial R(t) = Ua1(t)

m1−1∏
j>1 Uaj (t)

mj . Then
IR(t)/IP(t) is a non-trivial Abelian ideal of OA/IP(t). By the irreducibility of ρ, one has
V = (IR(t)/IP(t))V . Let V = V1 ⊕ · · · ⊕ Vr be the eigenspace decomposition of V with
respect to the IR(t)/IP(t) action, then eigenvalues λj for Vj (1 � j � r) are distinct. Here λj
is a linear functional on IR(t)/IP(t). As the representation takes value in sl(V ), the number r
is at least 2. We are going to show that the vector space V1 gives rise to a subrepresentation
of OA, hence a contradiction to the irreducibility of ρ. Let v be an element of V1 and
X ∈ OA. Denote ρ(X)(v) = ∑r

l=1 vl with vj ∈ Vj . For each j � 2, we choose an
element Zj ∈ IR(t) such that the class of Zj in IR(t)/IP(t) takes different values for λ1 and λj ,
λ1(Zj + IP(t)) �= λj (Zj + IP(t)). As ρ(X)ρ(Zj ) − ρ(Zj )ρ(X) (= ρ([X,Zj ]) is an element
of ρ(IR(t)), we have

V1 , ρ(X)ρ(Zj )(v) − ρ(Zj )ρ(X)(v) = λ1(Zj + IP(t))

r∑
l=1

vl −
r∑

l=1

λl(Zj + IP(t))vl

which implies vj = 0 for j � 2. Therefore, V1 is a representation of OA. �

Now we can derive the following result in [9, 23].

Theorem 6. Any non-trivial irreducible representation of OA is represented by ρ(â,s) for some
(â, s) ∈ Cn ×Sn, n ∈ Z>0. Subsequently, all the irreducible Hermitian representations of OA
are given by ρ(â,s) for (â, s) ∈ ⊔n∈Z>0

(Dn × Sn), modulo the following relation:

(â, s) = ((â1, . . . , ân)), (s1, . . . , sn)) ∼ (â′, s′) = ((â′
1, . . . , â

′
n)), (s

′
1, . . . , s

′
n))

where â′
j = âσ (j), s

′
j = sσ(j) and σ is a permutation of indices.

Proof. For a non-trivial irreducible representation ρ of OA, by lemmas 1, 4 and 15, the

Lie-algebra OA/Ker(ρ) is isomorphic to
n⊕ sl2 for some positive integer n. As an irreducible

representation of
n⊕ sl2 is obtained by tensoring irreducible one of its factors, the result follows

immediately. �

Remark. As is known in the affine Lie algebra theory, all irreducible finite-dimensional
representations of sl2-loop algebra (or equivalently sl2-affine algebra) are isomorphic to tensor
products of irreducible representations of sl2 through evaluation at distinct non-zero complex
number aj s (see, e.g., [13], exercise 12.11). While for the irreducible representations of
Onsager algebra OA, one requires all the values aj �= ±1, plus the identification of aj and
a−1
j which produce the same representation of OA. Hence the discussion of section 5 on the

effect when the Onsager algebra is valued at ±1 reveals the essence of the Onsager algebra
different from the sl2-loop algebra from the representation point of view.

We now discuss a physical application of the previous results to the superintegrable chiral
Potts N -state model. The Hamiltonian is the spin chain of a parameter k′ [2–7, 12, 20],

H(k′) = H0 + k′H1
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where H0 and H1 are Hermitian operators acting on the vector space of the L-tensor of C
N ,

defined by

H0 = −2
L∑
l=1

N−1∑
n=1

(1 − ω−n)−1Xn
l H1 = −2

L∑
l=1

N−1∑
n=1

(1 − ω−n)−1Zn
l Z

N−n
l+1

whereω = e(2π
√−1)/N ,Xl = I⊗· · · ⊗ lth

X ⊗ · · ·⊗I ,Zl = I⊗· · · ⊗ lth
Z ⊗ · · ·⊗I (ZL+1 = Z1).

Here I is the identity operator, X and Z are the operators of C
N with the relation, ZX = ωXZ,

defined by X|m〉 = |m + 1〉, Z|m〉 = ωm|m〉, m ∈ ZN . The operator H(k′) is Hermitian for
real k′, hence with the real eigenvalues. It is the Ising quantum chain [14] for N = 2. For
N = 3, one obtains the Z3-symmetrical self-dual chiral clock model with the chiral angles
π/2, which was studied by Howes et al [16]. For general N , we set

A0 = −2N−1H0 A1 = −2N−1H0

then A0 and A1 satisfy the DG condition, which by theorem 6 and proposition 5, ensures that
the eigenvalues of the unitary operator H(k′) have the following special form as in the Ising
model:

a + bk′ + 2N
n∑

j=1

mj

√
1 + k′2 − 2k′ cos(θj )

where a, b, θj ∈ R and mj = −sj , (−sj + 1), . . . , sj , with sj being a positive half-integer
[9]. For the ground-state sectors, by the computation of the superintegrable chiral Potts model
Baxter [5] obtained the corresponding eigenvalue of H(k′) given by the spin- 1

2 representation
of sl2, i.e. sj = 1

2 for all j , with an explicit formula of θj s (see, e.g., [23]). However, these
results are not obvious from the representation theoretic point of view. The understanding of
the exact form of eigenvalues of H(k′) has still been left as a theoretical challenge of the study
of Onsager algebra.

7. Further remarks

In this paper, we have obtained the structure of closed ideals I of the Onsager algebra OA and
established their relation with reciprocal polynomials P(t), I = IP(t). For P(t) = Ua(t)

L,
we have determined the Lie algebra structure of the quotient algebra OA/IP(t). These results,
together with a polynomial P(t) of mixed types, should make some significant extensions of
our knowledge of solvable or nilpotent algebras. Generalizations of the Onsager algebra to
other loop groups or Kac–Moody algebras, like that in [1, 25], should provide ample examples
of solvable algebras. The intimate relation of Onsager algebra and the superintegrable chiral
Potts model described in section 6 also suggests the potential links of Onsager algebra or
its generalized ones to other quantum integrable systems in statistical mechanics. We hope
that the further development of the subject will eventually lead to some interesting results in
Lie-theory with possible applications in quantum integrable models.
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